The Evolution of Ethics
An Introduction to Cybernetic Ethics
S. E. Bromberg

The Evolution of Ethics constructs a conceptual bridge between biology and human behavior. This is accomplished by examining the cultural and biological feedback systems that inspires the evolution of social rules. In theory, a cybernetic process is at the heart of developing ethical systems. This process occurs when biology and culture collide. The resulting conflict acts as a form of "informational feedback" telling people that there are serious problems that need to be resolved. Conflict inspires human adaptation in a way that extends the survival of the species. In this sense, the evolution of ethical systems is a response to the drive of the human species to survive. Additionally, a whole array of related "rule systems" such as statutory laws, professional codes, customs, and even the rules of etiquette evolve to further human adaptation. "Ethical systems" are reasoned rules of conduct that derive from past experience while moral laws (informally known) evolve over centuries of time and are many times are influenced and expressed by human emotions. Nevertheless, the words moral and ethical are often used interchangeably.

Author’s note: Below is a summary of concepts found in this book. A simpler, but more precise, explanation of evolutionary ethics can be found in the first four chapters. Other evolutionary ethics web sites are located on a separate page.
Science and Cybernetic Ethics

Ethics merges with science in cybernetic ethics. This book presents a persuasive theory describing how ethics can (and should) be linked to science and mathematics. Here, there are objective moral standards * that can be derived from the consequences of human actions. The evolution of ethical systems is shown as an "adaptation." Humans adapt to survive and they do so by creating standards and rules of behavior to stop viscous cycles of pain, suffering and death. The more organized and efficient human activities become, the more certain the survival of the species becomes. The science of cybernetics best describes this process. Norbert Wiener first developed cybernetic science in 1947. In this book, cybernetics means "informational feedback in dynamic systems" (such as a social system) that sustains or redirects behaviors. See example.

Note: The underlying principle of survival shows itself in the smallest details of life. Individual survival, family survival and national survival are all subcategories of the principle of human survival.

In theory, evolutionary ethics belongs to a branch of evolutionary science and not philosophy. With the exception of historical considerations, evolutionary ethics has no (necessary) logical connection to the formal ethics of philosophy. This is to say one does not need to know philosophy to know "how ethics have come to be." The words "The Evolution of Ethics" could be more precisely thought of as "The Evolution of Ethical Systems." Here, the speculative and often contingent nature of ethical discourse will ultimately be replaced by the mathematics of cybernetics.
Asking a Different Question

When the subject of ethics arises, reasonable people often ask, "Who's to say what is right or wrong?" When ethical development is viewed as a science, it is not so much who's to say an action is morally right or wrong, but rather, "What's to say an action is right or wrong?" The "what" is defined by inherent physical and psychological limitations within personal circumstances that make it impractical or imprudent to pursue certain behaviors, attitudes or methods of reasoning. There are reasons why ethical systems evolve. Ethical systems guide people away from pain, suffering and death and redirect their activities toward peace, prosperity and productivity. Rules of conduct bring order to societies, making them more efficient and sustainable.

Reason Rather than Relativity

The foundation of ethical evolution can be shown to rest on reason rather than relativity. Human morality (and the ethical systems that arise from it) is to some extent relative to time and place. But the underlying principle of the evolution of ethical systems remains the survival of the human species. The existence of multiple moral systems reveals a compartmentalization of moral structures, much like a ship is compartmentalized to give it more strength and integrity. This approach sheds some light on the centuries old conundrum of ethical relativity and first principles of ethics, and how the two coexist and retain their logical integrity.
Ethics & Philosophy: Ethics of the past

There is a long-standing belief among philosophers that all moral knowledge is inherent in the words of a language. This idea is reflected in the "is-ought dichotomy" of David Hume and the "naturalistic fallacy" of G. E. Moore. There, the objective of ethical reasoning is to analyze ethical statements—not to reason scientific facts, observations or human experience. For example, even if thousands of people are injured or killed by the excesses of drinking alcohol and then driving cars, one cannot formally reason that one "ought not" drink and drive. This is because the formal philosophical reasoning of meta-ethics stresses an analysis of the language and not scientific facts, observation or experience. Meta-ethics is a very popular form of ethical reasoning. Here, the underlying reasons why a particular ethical position is considered "right" or "wrong" are never questioned. For instance, in meta-ethical thinking, rape is considered neither right nor wrong despite a long history of reasons that make rape seem wrong. Ethics concerns human behavior. Some behaviors are discernibly better than others in terms of the consequences behaviors inspire. Being ethical is about making choices—not analyzing the properties of ethical statements. The study of ethics will be a more relevant and understandable discipline when it is removed from the field of philosophy and placed entirely in the realm of science. **see why ethics belongs in the field of science, not philosophy.**

Science & Religion

Evolutionary ethics need not clash with religious beliefs. For example, adultery to a religious person might seem "wrong" because it defies the will of God. On the other hand, adultery might also be reasoned as "wrong" by a moral scientist using secular logic. A scientist might draw conclusions from conflict analysis. Such an analysis would likely describe in
understandable terms how adultery violates the law of efficient action (and therefore should be discouraged as generative human behavior). The analysis would explain how human social systems must also be stable systems to survive long-term. Therefore, efficient action is an important factor in deciding human conduct. The scientist and the religious believer do have common interests. see systems

In Summary

Evolutionary ethics is a controversial subject. This book challenges the notion that evolutionary ethics belongs in the domain of philosophy and explains the benefits of its placement in science. Evolution, after all, springs from science and not philosophical speculation. In scientifically based evolutionary ethics, facts, observation and human experience are of central importance. In philosophically based ethics, the focus is on an analysis of ethical words, the properties of ethical language and questions of value, etc. The field of philosophy has had difficulty integrating fact, observation and experience into its formal ethical reasoning. Philosophy has never been able to resolve ethical issues in a relevant and substantive way. It is time for ethicists to move away from philosophical language and toward scientific methodology and description.

Note: To visualize the role of ethics in a scientific context, think of it as the study of human nature: It is the study of how things go wrong in society—and how to fix those problems by codifying behavior.

[Copyright listed under the Creative Commons]
Chapters Listed Below

The Evolution of Ethics
The Evolutionary Process
Seminal Social Catalysts
The Evolution of Reason
Moving From Ethics to Cybernetics
Cybernetic Ethics
Mathematical Concepts
Models of Ethical Evolution
Social Engineering
Preface
Foreword
Further Reading
Ethics Web Links

Notes
Altruism
What Are Moral Standards
Visceral Morality
Science and Ethics
Static & Dynamic Systems
Kantian and Utilitarian Ethics
Wisdom, Ought and Should
Reason
Definitions
Defining Survival In an Ethical Context
The Integration of Science & Ethics
Quantum Considerations
PDF of the Chapter